

Introduction

This is a demo show-casing how to document a Python library with Sphinx [https://www.sphinx-doc.org],
including the library’s public API via the Autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html] and Autosummary [https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html]
extensions. It uses reStructuredText [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html] (reST) in its hand-written documents
as well as in the doc-strings embedded with the library code.

The demo here is the yard stick to compare a Markdown-based workflow
against:

	demo-MyST-docstring [https://demo-MyST-docstring.readthedocs.io]:
Also uses the Sphinx documentation system, but has MyST [https://myst-parser.readthedocs.io] parse the
source files and doc-strings as Markdown instead of reST.

	demo-MkDocstrings [https://demo-MkDocstrings.readthedocs.io]:
Uses MkDocs [https://www.mkdocs.org] with the MkDocstrings [https://mkdocstrings.github.io] plug-in. This is an entirely
different documentation build system that uses Markdown throughout.

As for this demo, you can click on “Show Source” at the bottom of every
page to see the reStructuredText from which it was rendered.

[image: GitHub repo]
 [https://github.com/john-hen/demo-Sphinx-autodoc]

Overview

Pretend this is the tutorial that gives a general introduction to the
library, providing usage examples and all that.

This is a stand-alone document, in this case a file named overview.rst
inside the project’s docs folder. So it is separate from the actual
Python library in the, unimaginatively named, package folder. Both
folders are right underneath the project’s root in the repo.

We have set up the API documentation as a different chapter. It is
also a stand-alone document, named api.rst, and is linked in the
side bar on the left. Readers can go there to understand how the library
is to be used in application code. That is, it documents the public
API. Not every doc-string defined in package needs to show up there,
only the ones that are important. So we kick things off with a general
summary of the top-level objects, courtesy of Sphinx’s Autosummary [https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html]
extension, which links to in-depth API documentation provided by the
Autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html] extension.

We can then link to objects from the API documentation, such as
Class1 or action. The syntax is just `Class1`
and `action <package.action>` (as the latter reference happens to
be ambiguous). This works as long as we have set default_role = 'any'
in Sphinx’s configuration file conf.py. We could also do that on a
per-document basis with .. default-role:: any, but the any role
is so useful, it rarely makes sense to assign anything else as the
default.

Unless you want single back-ticks to denote literals, as they do in
Markdown. Then you might configure `default_role = 'literal', but
would have to write :any:`Class1` to create a reference to the API
documentation of Class1. So pick your poison.

Some people like to document the API within the general documentation
as they go along. So instead of just referring to Class1, they pull in
its doc-string somewhere in the text:

	
class Class1

	This is the first line in the doc-string of Class1.

It is part of module classes.

	
action(do='nothing')

	This is a method of Class1.

Many projects also like to have Intersphinx [https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html] references, so that they
can easily link to, for example, Python’s pathlib [https://docs.python.org/3/library/pathlib.html#module-pathlib]
module. This needs to be set up in conf.py, but makes for shorter
link targets.

One noteworthy shortcoming of using reST as a markup language is that
we cannot have literals, or even emphasis, inside link text.
That’s because reStructuredText does not support nested markup [https://docutils.sourceforge.io/FAQ.html#is-nested-inline-markup-possible] of any kind. Note how this [https://example.org]
works (which is `this <https://example.org>`_ in the source), but
`this <https://example.org>`_ is broken on this very page. Even
though it’s the same syntax as before, only with back-ticks around
“this”. (You’ll have to click “Show Source” at the bottom of the page
to see the original markup, as it isn’t possible to reproduce it on the
rendered page, at least not inline.)

First steps

This is a section inside the Overview chapter. We have marked it as
a possible link target by putting .. _first-steps: right above
the section header. We could also generate section labels automatically,
once and for all, if we used the Autosectionlabel [https://www.sphinx-doc.org/en/master/usage/extensions/autosectionlabel.html] extension.

Here is a code example:

from package.classes import Class1

class1 = Class1()
class1.action()

This requires a .. code-block:: directive, followed by a blank line,
followed by the actual code indented one level. It’s automatically
highlighted in the colors defined by the theme, which in this case
is Furo [https://pradyunsg.me/furo]. Click the icon at the top right of the page to switch between
dark and light mode and notice how the syntax highlighting changes along
with it. We could easily replace Furo with any of a number of
Sphinx themes [https://sphinx-themes.org]. As themes are completely independent of the
documentation semantics, all it takes is assigning another name to
html_theme in conf.py (and pip install-ing the corresponding
package).

API

This is the front page for the API documentation. It uses the Sphinx
extension Autosummary [https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html], which creates an overview page that links to
individual pages created by the (separate) Autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html] extension.

	action

	This is the first line in the doc-string of function action.

	actions

	This is the first line in the doc-string of module actions.

	classes

	This is the first line in the doc-string of module classes.

action

	
action(do='something')

	This is the first line in the doc-string of function action.

It is defined in module actions.

actions

This is the first line in the doc-string of module actions.

We can reference other objects, such as Class1 and Class2.
We can link back to one of the main documents as a whole, for example
Overview, or a specific section. We can
create external cross-references like to Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]
thanks to the Intersphinx [https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html] extension.

And we can have highlighted code examples:

from package import action
from package import Class1

action(do='whatever')
class1 = Class1()
class1.action()

Sphinx created this page from a “stub” file named package.actions.rst
in the api folder underneath docs. As you can tell from clicking
“Show Source” at the bottom of this very page, it contains very little:

actions

.. automodule:: package.actions

Autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html] takes care of the rest and fills in the blanks, pulling in
signatures and doc-strings from the package’s source code. Autosummary [https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html]
would even create these stubs automatically, unless we tell it not to.
We can also look at the source code of the action function, of this
whole module in fact, if we click on the [source] link on the right,
which is there courtesy of the Viewcode [https://www.sphinx-doc.org/en/master/usage/extensions/viewcode.html] extension.

	
action(do='something')

	This is the first line in the doc-string of function action.

It is defined in module actions.

classes

This is the first line in the doc-string of module classes.

Here’s a link to the more interesting module actions.

	
class Class1

	This is the first line in the doc-string of Class1.

It is part of module classes.

	
action(do='nothing')

	This is a method of Class1.

	
class Class2

	This is the first line in the doc-string of Class2.

It is also part of module classes.

	
action(do=None)

	This is a method of Class2.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 package	

 	
 	
 package.actions	

 	
 	
 package.classes	

Index

 A
 | C
 | M
 | P

A

 	
 	action() (Class1 method)

 	(Class2 method)

 	(in module package)

 	(in module package.actions)

C

 	
 	Class1 (class in package.classes)

 	
 	Class2 (class in package.classes)

M

 	
 	
 module

 	package.actions

 	package.classes

P

 	
 	
 package.actions

 	module

 	
 	
 package.classes

 	module

 nav.xhtml

 Table of Contents

 		
 Introduction

_static/plus.png

_static/file.png

_static/minus.png

